

O2E Inc. Environmental Consultants London, Ontario, Canada Ph: 519.633.2400 Fx: 519.633.2700 www.o2e.ca

WEBER MANUFACTURING TECHNOLOGIES INC.

16566 HIGHWAY #12, MIDLAND, ONTARIO L4R 4L1

ANNUAL ENVIRONMENTAL REPORTING 2024

REPORT PREPARED BY: O2E INC.

REPORT PREPARED FOR: WEBER MANUFACTURING TECHNOLOGIES INC.

JUNE 9, 2025

O2E Inc. Environmental Consultants London, Ontario, Canada Ph: 519.633.2400 Fx: 519.633.2700 www.o2e.ca

June 9, 2025

Mr. Chris Holsgrove Weber Manufacturing Technologies Inc. 16566 Highway #12 P.O. Box 399 Midland, Ontario L4R 4L1

Re: Annual Environmental Reporting Weber Manufacturing Technologies Inc. <u>O2E Reference #24-128</u>

Delivery

Dear Chris:

Weber Manufacturing Technologies Inc. (Weber) retained O2E Inc. (O2E) to collect site information, perform calculations and prepare the annual report required by Environment and Climate Change Canada (ECCC) under the National Pollutant Release Inventory (NPRI) and Greenhouse Gas (GHG) reporting program for the Weber Manufacturing and NVD facilities in Midland. This letter summarizes the reportable releases for these annual requirements.

CHANGES TO REPORTABLE SUBSTANCES AND REPORTING REQUIREMENTS

There were no changes made to the NPRI substance list and reporting requirements for the 2024 reporting year.

RESULTS

The results of the assessment show that the Manufacturing facility is not required to report to ECCC under the requirements of the NPRI. Supporting information for the determination of contaminant emission estimates and threshold comparisons is presented in **Attachment 1** and includes such items as production inputs, emission calculations, operating hours, etc. A summary of the contaminants included in the assessment for this year is presented in the following table.

		NPRI Release Report Entry - Tonnes							
Contaminant	CAS	ŀ	Air	Watar	Disposal	Beevelo			
		Point	Fugitive	water	Disposai	Recycle			
Nickel (and its compounds)	NA – 06	0.012	NA	0.000	0.000	4.644			

Table 1: Reportable Contaminants for Year 2024 – NVD Facility

A summary of the facility's annual production information is provided in **Attachment 1**. The confirmation notice and report summary are attached to this report in **Attachment 2**.

Reported substance quantities remain essentially unchanged from the previous reporting period.

NPRI REPORTING

The 2024 reporting for the NVD facility was completed on-line using the web based Single Window Information Manager (SWIM) portal. The reports were submitted to the appropriate agencies on June 9, 2025. A copy of the submission for the NVD facility has been provided in **Attachment 3**. The report can also be viewed through the SWIM website. Report certification was completed electronically when the report was submitted on the above noted date.

GREENHOUSE GAS EMISSIONS REPORTING

ECCC Methodology

An assessment of greenhouse gas emissions was completed for the facility. The assessment was based on quantities of fossil fuels burned in the previous calendar year for stationary and mobile equipment. In order to calculate emissions of greenhouse gases from fossil fuel combustion, the quantity of each fuel used was multiplied by the applicable ECCC emission factor to arrive at an annual emission of the three main greenhouse gases produced from fossil fuel combustion: Carbon Dioxide (CO₂), Nitrous Oxide (N₂O) and Methane (CH₄). All calculations for fuel combustion were completed in accordance with the guidance provided by ECCC in their document entitled "Greenhouse Gas Reporting Program – Canada's Greenhouse Gas Quantification Requirements Version 7.0" dated December 2023, specifically Chapter 2 – Quantification Methods for Fuel Combustion and Flaring. The following equations from the aforementioned documents were used to calculate releases of greenhouse gases from the fuels used at the site:

- Carbon dioxide emissions from fossil fuels (except natural gas) and biomass:
 - Equation 2-2: Volume or Mass based Non-Variable Fuels Equation
- Carbon dioxide emissions from natural gas:
 - Equation 2-9: Carbon Dioxide High Heat Value Method
- Methane and nitrous oxide emissions from natural gas:
 - Equation 2-12: CH₄ and N₂O High Heat Value Methods, in Energy Units
- Methane and nitrous oxide emissions from fossil and biomass fuels:

Equation 2-13: CH₄ and N₂O High Heat Value Methods, in Physical Units

MECP Methodology

Calculations of CO₂e releases from stationary combustion sources and onsite transportation are based on the standard quantification methods listed in the MECP document entitled "Guideline for Quantification, Reporting and Verification of Greenhouse Gas Emissions – March 2024", specifically Appendix 11 - ON.20 Fuel Combustion and Flaring. Note that the MECP has referenced the standard quantification methods published by ECCC in their guidance document, including the use of the IPPC Fifth Assessment Report Global Warming Potentials and greenhouse gas emissions from on-site transportation sources.

Summary of Emission Factors and Equations

Emission factors and equations used to calculate releases of greenhouse gases from the various fuels used by the facility were obtained from the ECCC document entitled "Greenhouse Gas Reporting Program – Canada's Greenhouse Gas Quantification Requirements – Version 7.0" dated December 2023 and are summarized below.

Table 2: Summary of Emission Factors

Fuel Type	CO2	CH₄	N₂O
Natural Gas	1956.38 g/m³	0.98 g/GJ	0.87 g/GJ
Diesel (mobile)	2,681 g/L	0.073 g/L	0.02 g/L
Propane (mobile)	1515 g/L	0.024 g/L	0.108 g/L

Equation 2-2: Volume or Mass based Non-Variable Fuels Equation (CO₂)

$$CO_{2i} = \sum_{p=1}^{n} Fuel_{ip} \times EF_{2i} \times 10^{-6}$$

Where:

CO_{2i} = Annual mass of CO₂ emissions for a specific fuel type "i" (tonnes)

n = Number of measurement periods for the calendar year

- Fuel_{ip} = Mass or volume of fuel type "i" combusted in measurement or delivery period "p" (mass in tonnes for solid fuel, volume in kilolitres for liquid fuel or volume in cubic meters, at 15°C and 101.325 kPa, for gaseous fuel)
- EF_{2i} = Fuel type "i" specific CO2 emission factors
- 10⁻⁶ = Conversion factor from grams to metric tonnes.

Equation 2-9: Natural Gas (Variable Fuels Method)

$$CO_{2NG} = \sum_{p=1}^{n} Fuel_p \times (Slope \times HHV_p - Intercept) \times 10^{-6}$$

Where:

CO_{2i} = Annual mass of CO₂ emissions from natural gas (tonnes)

n = Number of fuel heat content measurement periods for the calendar year

Fuel_{ip} = Volume of natural gas fuel combusted during measurement period "p" (cubic meters at 15°C and 101.325 kPa), as specified in Sections 2.C.1 and 2.C.2.

 HHV_p = High heat value of natural gas for the measurement period "p" (MJ/cubic meter, at 15°C and 101.325 kPa), as specified in Sections 2.C.1 and 2.C.3.

(Slope × HHV p – Intercept)

= Empirical equation (g of CO_2 /cubic meter of natural gas) representing a very close relationship between carbon dioxide and volume of natural gas determined from composition data of a large discrete set of available data, in this case, Slope = 66.20 and Intercept = 617.7

10⁻⁶ = Conversion factor from grams to metric tonnes.

Equation 2-12: CH₄ and N₂O High Heat Value Methods, in Energy Units

$$CH_{4i} \text{ or } N_2O_i = \sum_{p=1}^n Fuel_{ip} \times HHV_{ip} \times 10^{-3} \times EF_i \times 10^{-6}$$

Where:

$CH_{4i} \text{ or } N_2O_i$	= Annual mass of CH ₄ or N ₂ O emissions for fuel type "i", tonnes per year
n	= Number of measurement periods for the calendar year
Fuel _{ip}	= Mass or volume of fuel type "i" combusted in measurement or delivery period
	"p" (mass in tonnes for solid fuel, volume in kilolitres for liquid fuel or volume in
	cubic meters, at 15°C and 101.325 kPa, for gaseous fuel)
HHV _{ip}	= High heat value measured directly or provided by the fuel supplier for the
	measurement period "p" of fuel type "i" (MJ per tonne for solid fuel, MJ per
	kilolitre for liquid fuel, or MJ per cubic meter, at 15°C and 101.325 kPa, for
	gaseous fuel)
EFi	= Fuel type "i" specific CH ₄ or N ₂ O emission factors in energy units
10 ⁻⁶	= Conversion factor from grams to metric tonnes.
10 ⁻³	= Conversion factor from megajoules to gigajoules.

O2E Inc. Environmental Consultants London Ontario Canada

Equation 2-13: CH₄ and N₂O High Heat Value Methods, in Physical Units

$$CH_{4i} \text{ or } N_2O_i = \sum_{p=1}^n Fuel_{ip} \times EF_i \times 10^{-6}$$

Where:

$CH_{4i} \text{ or } N_2O_i$	= Annual mass of CH ₄ or N ₂ O emissions for fuel type "i", tonnes per year
n	= Number of measurement periods for the calendar year
Fuel _{ip}	= Mass or volume of fuel type "i" combusted in measurement or delivery period
	"p" (mass in tonnes for solid fuel, volume in kilolitres for liquid fuel or volume in
	cubic meters, at 15°C and 101.325 kPa, for gaseous fuel)
EF _{2i}	= Fuel type "i" specific CH ₄ or N ₂ O emission factors
10 ⁻⁶	= Conversion factor from grams to metric tonnes.

RESULTS – ECCC and MECP

A summary of the reportable contaminants as carbon dioxide equivalents (CO_{2e}) for the reporting period is presented in the following table. Facility operations included in the assessment consist of stationary combustion equipment and on-site transportation equipment. Supporting information for emission estimates is presented in Appendix 4 and includes such items as production inputs, emission calculations, etc.

Parameter	Releases	GWP	CO ₂ e					
	(tonnes)		(tonnes)					
Carbon Dioxide	1,197.762	1	1,197.762					
Methane	0.023	28	0.653					
Nitrous Oxide	0.021	265	5.488					
Total	NA	NA	1,203.903					

Table 3B: Summary of CO₂e Emissions – Threshold 10,000 tonnes – NVD Facility

Parameter	Releases (tonnes)	GWP	CO2e (tonnes)	
Carbon Dioxide	2,003.756	1	2,003.756	
Methane	0.039	28	1.093	
Nitrous Oxide	0.035	265	9.195	
Total	NA	NA	2,014.044	

The current ECCC/MECP greenhouse gas reporting threshold is 10,000 metric tonnes. As such, the facilities are not required to report under either the ECCC or MECP Greenhouse Gas Reporting programs.

CLOSING

Please feel free to contact us with any questions or comments that you may have with respect to this report.

Sincerely,

O2E INC. ENVIRONMENTAL CONSULTANTS

Tim Logan President ATTACHMENT 1 NPRI/TRA SUPPORTING CALCULATIONS

O2E Inc. Environmental Consultants London Ontario Canada

March 27, 2025

Chris Holsgrove Weber Manufacturing Technologies Inc. 16566 Highway #12 P.O. Box 399 Midland, Ontario L4R 4L1

Re: Annual Environmental Reporting O2E Reference #24-128

Dear Chris:

In order to begin the calculations of material releases from your facilities we have prepared the following information request. The request is based on information you have provided in the past for your previous annual submissions. We have included the information presented last year for reference purposes. Please indicate any changes to the information presented, if the information has not changed, feel free to leave the cell blank.

Information Required for Weber Manufacturing

ltem	2023 Information	2024 Information
Public Contact	Chris Edwards	Chris Edwards
Technical Contact	Chris Holsgrove	Chris Holsgrove
Number of Employees	217	215
Changes to plant process equipment	Added 1 SMC Mold	No Change
	Press	
Welding wire used	454Kg	412 kg
Natural gas used	556,000m3	612,235m3
Propane used		
Average number of trucks per day	9	8
Operating hours per week	96	96
Scrap steel recycled (Del Sauniers)	140,322 lbs	167,980 lbs
Aluminum recycled (Del Sauniers)	34,083 lbs	85,574 lbs
Waste oils – Safety-Kleen – disposal 251L	4100 L	10,648 L
Waste oils – Safety-Kleen – disposal 232 L	0	0
Waste oils – Safety-Kleen – disposal 252L	750L	5300 L
Graphic Arts Waste – Safety-Kleen – Disposal 265L	0	0
Graphic Arts Waste – Safety-Kleen – Disposal	0	0
Paint/Pigment/Coating Residues – Safety-Kleen –	641L	1249 L
Disposal 1451		
Paint/Pigment/Coating Residues – Safety-Kleen –	0	0
Disposal		
Waste Coolant 253L – Terrapure –disposal	4138 L	0
Silver Solder	218	1000 lbs

Information Required for NVD Plant

ltem	2023 Information	2024 Information
Public Contact	Chris Edwards	Chris Edwards
Technical Contact	Chris Holsgrove	Chris Holsgrove
Number of Employees	21	21
Changes to plant process equipment	None	Added heat Recovery NG
Natural gas consumption	1,222,728 m3	1,023,734 m3
Propane used	27 cylinders	22
Average number of trucks per day	1	1
Operating hours per week	168	168
Scrap nickel recycled	10,139.07 lbs	10,237.21
Total nickel produced	67,600Kg	53,101.5 kg

Please feel free to contact us if you have any questions regarding the information required.

Sincerely,

O2E INC. ENVIRONMENTAL CONSULTANTS

Tim Logan President

Weber Manufacturing NPRI Combustion Calculations

2024 Calender Year

Sources:

AP-42 Chapter 1.3 Fuel Oil Combustion, September 1998 AP-42 Chapter 1.4 Natural Gas Combustion, July 1998

Table 1: Emission Factors for Each Contaminant

	Units	NO _x	СО	PM	PM ₁₀	PM _{2.5}	SO ₂	Methane	VOC	N ₂ O
Natural Gas	$kg/10^{6} m^{3}$	1600	1344	30.4	30.4	30.4	9.6	36.8	88	35.2
# 2 Fuel Oil	kg/10 ³ L	2.4	0.6	0.24	0.1296	0.0996	8.52	0.02592	0.06672	0.0132
Note:	Emission factors for Boilers < 100 million BTU/hr (SCC 1-02-005-02/03)									

Emission factors for Boilers < 100 million BTU/hr (SCC 1-02-005-02/03)

Table 2: Emission Calculations for Each Contaminant based on actual usage (annual)

Annual Gas Consumption	Annual #2 Fuel Oil Consumption	NO _x	со	ΡΜ	PM ₁₀	PM _{2.5}	SO2	Methane	voc	N ₂ O
(cubic meters)	(Litres)	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year
612,235		980	823	19	19	19	6	23	54	22

Annual Gas Consumption Calender Year (cubic metres)

Total

612,235

Recycled Metals	2022	
Scrap steel	167,980 lbs	Main constituent (Iron) is not listed under NPRI
Aluminum	85,574 lbs	reportable to NPRI as fume or dust only
Copper	0 lbs	Low copper alloy - NPRI threshold for Copper (and its compounds) is 10,000 kg annually
MPO Amounts		
Silver Solder	1000 kg	NPRI threshold for Silver (and its compounds) is 10,000 kg annually.

Class	Quantity (L)	Receiver
252L	5,300	Safety Kleen
232L	0	Safety Kleen
253L	0	Safety Kleen
251L	10,648	Safety Kleen
2651	0	Safety Kleen
265L	0	Safety Kleen
1451	1,249	Safety Kleen
145L	0	Safety Kleen

Contaminant	CAS	Amount in Waste Oil (%)	Annual Quantity Used kg	Annual Releases kg/yr	Reporting Threshold kg/yr	Reportable?	Reportable Emissions kg/yr	Part 5 Threshold	Part 5 Reportable ?	Part 5 Reportable Emissions kg/yr

Speciation data is not available for the wastes shipped off-site. The waste oils and coolant are a mixture of oils and water.

Part 4 Release Threshold Assessment

Part 4 Release Threshold Assessment		1			
Contaminant	CAS Annual Emissions Rep		Reporting Threshold	Reportable?	Reportable Emissions
		kg/yr			kg
Oxides of Nitrogen	11104-93-1	980	20,000	No	NA
Carbon Monoxide	630-08-0	823	20,000	No	NA
Particulate Matter	NA - M08	19	20,000	No	NA
Inhalable Particulate Matter (PM10)	NA - M09	19	500	No	NA
Respirable Particulate Matter (PM2.5)	NA - M10	19	300	No	NA
Sulphur Dioxide	7446-09-5	6	20,000	No	NA
VOC - including process	NA - M16	54	10,000	No	NA

NVD Plant NPRI Combustion Calculations

2024 Calender Year

Sources:

AP-42 Chapter 1.3 Fuel Oil Combustion, September 1998 AP-42 Chapter 1.4 Natural Gas Combustion, July 1998

Table 1: Emission Factors for Each Contaminant

	Units	NO _x	СО	PM	PM ₁₀	PM _{2.5}	SO ₂	Methane	VOC	N ₂ O
Natural Gas	$kg/10^{6} m^{3}$	1600	1344	30.4	30.4	30.4	9.6	36.8	88	35.2
# 2 Fuel Oil	kg/10 ³ L	2.4	0.6	0.24	0.1296	0.0996	8.52	0.02592	0.06672	0.0132
Note:	Emission factors for Boilers < 100 million BTU/hr (SCC 1-02-005-02/03)									

Emission factors for Boilers < 100 million BTU/hr (SCC 1-02-005-02/03)

Table 2: Emission Calculations for Each Contaminant based on actual usage (annual)

Annual Gas Consumption	Annual #2 Fuel Oil Consumption	NO _x	со	PM	PM ₁₀	PM _{2.5}	SO2	Methane	VOC	N ₂ O
(cubic meters)	(Litres)	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year	kg/year
1,023,734		1,638	1,376	31	31	31	10	38	90	36

Annual Gas Consumption Calender Year (cubic metres)

Total

1,023,734

Process Emission Calculations

Operating hours	168	per week	
	50	weeks per year	
	8,400		
Nickel Emission rate (source testing)	0.000397	g/s	
Nickel Produced	53,102	kg	
	53.102	tonnes	
Nickel Recycled	10,237.2	lbs	
	4,643.5	kg	
		MPO Threshold	Reportable?
Part 1A	NA - 11	10	Yes
Total nickel MPO	57.7570	tonnes	

Reportable Releases - Threshold Comparison 2024 to 2023

Substance	CASRN	Year	Air	Water	Disposal	Recycle
		2024	0.012	0.000	0.000	4.644
Nickol	NA 11	2023	0.012	0.000	0.000	4.599
INICKEI	NA - 11	Change	0.000	0.000	0.000	0.045
		% Change	0.0%	N/A	N/A	1.0%

Part 1A - 10 Tonne MPO Reporting Threshold

Part 4 Release Threshold Assessment

Part 4 Release Threshold Assessment					
Contaminant	CAS	Annual Emissions kg/yr	Reporting Threshold	Reportable?	Reportable Emissions kg
Oxides of Nitrogen	11104-93-1	1,638	20,000	No	NA
Carbon Monoxide	630-08-0	1,376	20,000	No	NA
Particulate Matter	NA - M08	31	20,000	No	NA
Inhalable Particulate Matter (PM10)	NA - M09	31	500	No	NA
Respirable Particulate Matter (PM2.5)	NA - M10	31	300	No	NA
Sulphur Dioxide	7446-09-5	10	20,000	No	NA
VOC - including process	NA - M16	90	10,000	No	NA

Part 1A - Reportable Summary - Quantities in Mg

Contaminant	CAS	NPRI	NPRI Part 5	Annual Release Report Entry			
Containmant	CAS	Reportable?	Reportable?	Air	Water	La	nd
						Disposal	Recycle
Nickel	NA - 11	Yes	NA	0.0120	0.0000	0.0000	4.644

ATTACHMENT 2 CONFIRMATION NOTICES AND REPORT SUMMARIES

O2E Inc. Environmental Consultants London Ontario Canada

Government Gouvernement of Canada du Canada <u>National Pollutant Release Inventory</u>

<u>SWIM</u>

- > <u>Reporting Dashboard (/Weber Manufacturing Technologies Inc./Nickel Vapour Deposition)</u>
- > Report Submission and Electronic Certification

Report Submission and Electronic Certification

• Note: If there is a change in the contact information for the facility, a change in the owner or operator of the facility, if operations at the facility are terminated, or if information submitted for any previous year was mistaken or inaccurate, please update this information through SWIM or by contacting the National Pollutant Release Inventory directly.

Electronic Statement of Certification

* Specify the language of correspondence

English

Comments (optional)

I hereby certify that I have exercised due diligence to ensure that the submitted information is true and complete. The amounts and values for the facility(ies) identified below are accurate, based on reasonable estimates using available data. The data for the facility(ies) that I represent are hereby submitted to the programs identified below using the Single Window Reporting Application.

I also acknowledge that the data will be made public

Note: Only the person identified as the Certifying Official or the authorized delegate should submit the report(s) identified below.

Company name

Weber Manufacturing Technologies Inc.

Certifying Official

Chris Edwards

Report Submitted by

Tim Logan

* I, the Certifying Official or authorized delegate, agree with the statements above and acknowledge that by pressing the "Submit Selected Report(s)" button, I am electronically certifying and submitting the facility report(s) for the identified company to its affiliated programs.

Report(s) included with submission

Report Year	Facility Name	Province	City	Applicable Program(s)
2024	Nickel Vapour Deposition	Ontario	Midland	NPRI

Back to Dashboard

Version: 4.1.25.3517-006

Summary Report

General Information

NPRI ID

7097

Company Legal Name

Weber Manufacturing Technologies Inc.

Facility Name

Nickel Vapour Deposition

Facility Address

375 Cranston Crescent, Midland, Ontario, L4R 4K8, Canada

Report Details Report Year 2024 Programs NPRI

Report Types		
NPRI Inventory		
Report Status		

Substances

CAS RN	Substance Name	Releases	Disposals	Recycling	Unit
NA - 11	Nickel (and its compounds)	0.012		4.644	tonnes

Version: 4.1.25.3517-006

ATTACHMENT 3 SWIM SUBMISSION

O2E Inc. Environmental Consultants London Ontario Canada

Contents

- 1. General Information
- 2. Summary of Releases, Disposals and Recycling
- 3. Releases to Air, Water and Land
- 4. On-site and Off-site Disposals
- 5. Recycling
- 6. Reasons for Adding or Removing Substance(s)
- 7. Special Reports
- 8. Feedback
- 9. Report Submission and Electronic Certification

General Information

Report Details

Report Year: 2024 Report Type(s)/Program(s): NPRI Report Status: Submitted Submitted Date: 2025-06-09 1:13:52 PM Report Creation Type: Prepopulated Company Idm Id: 15325 Facility Idm Id: 11125

Company Information

Legal Name: Weber Manufacturing Technologies Inc.

Business Number: 855333381

Mailing Address: PoBox 399 Post Office Box 16566 12 Highway, Midland, Ontario, L4R 4L1, Canada

Website: www.webermfg.ca

Parent Company(ies) Information

Name	Business Number	D-U-N-S Number	Percentage Owned	Mailing Address	Additional Information
Zynik Capital Corporation	131891772		100%	General Delivery 1040 West Georgia Street, Vancouver, British Columbia, V6E 4H1, Canada	Suite 950

Contacts

Contact Type	Name	Phone	Extension	Email	Position	Correspondence Language	Company Name
Technical Contact	Chris Holsgrove	705-527-2957		Chris.Holsgrove@ webermfg.ca	Maintenance Supervisor	English	
Certifying Official	Chris Edwards	705-527-2930		Chris.Edwards@w ebermfg.ca	Chief Executive Officer	English	
Public Contact	Chris Edwards	705-527-2930		Chris.Edwards@w ebermfg.ca	Chief Executive Officer	English	
Company Coordinator	Chris Holsgrove	705-527-2957		Chris.Holsgrove@ webermfg.ca	Maintenance Supervisor	English	

Contractor	Tim Logan	519-633-2400	t.logan@o2e.ca	Consultant	English	O2E Inc.
Contact						

Facility Information

Facility Name: Nickel Vapour Deposition

Physical Address: 375 Cranston Crescent, Midland, Ontario, L4R 4K8, Canada

Latitude and longitude: 44.730200, -79.864900

Primary NAICS Code: 333511

Number of full-time employee equivalents: 21

Is this a portable facility?: No

Identifiers, Licences, and Permit Numbers

Type of Identifier or Issuing Agency of Permit	Identifier or Permit Number
National Pollutant Release Inventory Identifier	7097
Ontario Ministry of the Environment, Conservation and Parks	5337-4ХАЈНК

General Reporting Questions

Do you want to report any Part 1A substances?: Yes

Do you want to report any Part 1B substances?: No

Is the facility subject to the Chromium Electroplating, Chromium Anodizing and Reverse Etching Regulations (SOR/2009-162)?: No

Do you want to report any Part 2 substances?: No

Did wood preservation using creosote occur at the facility, and were PAHs released, disposed of, or transferred as a result of wood preservation using creosote?: No

Do any of the following activities take place at the facility, regardless of the number of employees at the facility?: None

Do employees at the facility work a total of 20 000 hours or more AND do any of the following activities take place at the facility?: None

Do you want to report any Part 4 substances?: No

Do you want to report any Part 5 substances?: No

Does the facility have a P2 Plan?: No

Did the facility complete any pollution prevention activities in the current NPRI reporting year?: No

Did the facility operate one or more electricity generating units that had a capacity of 25 MW or more and that distributed or sold to the grid 33% or more of its potential electrical output in the calendar year?: No

Summary of Releases, Disposals and Recycling

Parts 1-3 Substances

CAS RN	Substance Name	Substance Part	Releases	Releases to All Media < 1 tonnes	Disposals	Recycling	Unit	Nature of activities	Required / Voluntary
NA - 11	Nickel (and its compounds)	1A	0.012			4.644	tonnes	As a formulation component	Required

Releases to Air, Water and Land

Releases to Air, Water and Land

CAS RN	Substance Name	Substance Part	Туре	Release Category	Basis of Estimate	Detail Code	Quantity	Unit
NA - 11	Nickel (and its compounds)	1A	Releases to air	Stack or Point Releases	M3 - Source Testing and Sampling		0.012	tonnes

Reasons for Change, Releases to Air and Land Comments, and Substance Release Comments

CAS RN	Substance Name	Substance	Reasons for Change	Nature of	Nature of	Substance
		Part		"Other	"Other" land	Release
				Non-Point	release	Comment
				Releases"	comments	

				release comments	
NA - 11	Nickel (and its compounds)	1A	No significant change		

Parts 1-3 Substances Quarterly Percentage Breakdown

CAS RN	Substance Name	Substance Part	January - March %	April - June %	July - September %	October - December %
NA - 11	Nickel (and its compounds)	1A	25	25	25	25

On-site and Off-site Disposals

Reasons for Disposal, Reasons for Change and Substance Disposal Comments

CAS RN	Substance Name	Substance Part	Reasons for Disposal	Reasons for Change	Substance Disposal Comments
NA - 11	Nickel (and its compounds)	1A		No significant change	

Recycling

Transfers Off-Site for Recycling

CAS RN	Substance Name	Substance Part	Recycling Category	Basis of Estimate	Detail Code	Quantity	Unit
NA - 11	Nickel (and its compounds)	1A	Recovery of metals and metal compounds	C - Mass Balance		4.644	tonnes

Reasons for Recycling, Reasons for Change and Substance Recycling Comments

CAS RN	Substance Name	Substance Part	Reasons for Recycling	Reasons for Change	Substance Recycling Comments
NA - 11	Nickel (and its compounds)	1A	Production Residues, Off-specificatio n products, Unusable parts or discards	No significant change	

Off-Site Recycling Locations

CAS RN	Substance Name	Substance Part	Recycling Category	Name	Address	Quantity	Unit
NA - 11	Nickel (and its compounds)	1A	Recovery of metals and metal compounds	Waxman Recycling Industries	96 Hyde Avenue Parkway, Toronto, Ontario, Canada	4.644	tonnes

Reasons for Adding or Removing Substance(s)

Special Reports

Pollution Prevention Plan

Plan was prepared or implemented for another government jurisdiction: No

Plan was prepared or implemented on a voluntary basis: No

Reasons no pollution prevention activities were completed: Activities were implemented in a previous year; additional activities are either unnecessary or unfeasible at this time

Feedback

Report Submission and Electronic Certification

Specify the language of correspondence: English

Company name: Weber Manufacturing Technologies Inc.

Certifying Official: Chris Edwards

Report Submitted by: Tim Logan

I, the Certifying Official or authorized delegate, agree with the statements above and acknowledge that by pressing the "Submit Selected Report(s)" button, I am electronically certifying and submitting the facility report(s) for the identified company to its affiliated programs.: Yes

O2E Inc. Environmental Consultants London Ontario Canada

Quantification of GHG Emissions - Environment Canada and Ontario Ministry of the Environment Standard Quantification Methods Chapter 2 - Quantification Methods for Fuel Combustion and Flaring

Weber Manufacturing - Manufacturing Facility								
Date Completed:	June 5, 2025	for calendar year	2024					

Calculations of CO2e releases from fossil fuel combustion are based on the standard quantification methods listed in the Environment Canada document entitled "Greenhouse Gas Reporting Program -Canada's Greenhouse Gas Quantification Requirements Version 7.0 - December 2023", specifically Chapter 2 Quantification Methods for Fuel Combustion and Flaring. The following equations from the aforementioned section were used to calculate releases of greenhouse gases from the fuels used at the site.

Carbon dioxide emissions from fossil fuels (except natural gas):	Equation 2-2: Volume or Mass based Non-Variable Fuels Equation
Carbon dioxde emissions from natural gas:	Equation 2-9: Carbon Dioxide High Heat Value Method
	CO _{2NG} =Natural Gas Volume x (SLOPE x HHV - INTERCEPT) x 10 ⁻⁶
Methane and nitrous oxide emissions from natural gas:	Equation 2-12: CH₄ and N₂O High Heat Value Methods, in Energy Units

Other variables used in the determination of greenhouse gas emissions, including emission factors and high heating values, were also obtained from the above noted guidance document and are listed below. Note that the annual average high heat value for natural gas was obtained from Union Gas.

	E	mission Factor	S							
Fuel	CO2	CO ₂ CH ₄ N ₂ O Heating Values					Natura	612,235 m [°]		
Natural Gas	1956.38 g/m ³	0.98 g/GJ	0.87 g/GJ	Fuel	<u>HHV</u>	<u>Units</u>		Diesel	0	L
Diesel (mobile)	2,681 g/L	0.073 g/L	0.02 g/L	Natural Gas	0.03888333	GJ/m ³	Pro	pane burned	0	L
Propane	1515 g/L	0.024 g/L	0.108 g/L	Propane	25.66	GJ/kL		Slope	66.2	
				Diesel	38.3	GJ/kL		Intercept	617.7	
	Calcula	ted Releases (T	onnes)				Natural gas H	HV		
Fuel	CO2	CH₄	N ₂ O				Location	Year	Month	нн
Natural Gas	1197.762	0.023	0.021				ONTARIO	2024	1	T

	-	-	-	
Natural Gas	1197.762	0.023	0.021	
Diesel (mobile)	0.000	0.000	0.000	
Propane	0.000	0.000	0.000	
Totals	1197.762	0.023	0.021	
Global Warming Potential	1	28	265	
CO ₂ e releases	1197.762	0.653	5.488	
Combustion Total			1,203.904	tonnes
Total CO ₂ e Releases	1,203.904	tonnes		
Reporting Threshold	10,000	tonnes		
Does site exceed threshold?	No			

Not Required

Is reporting required?

gas i	HV		
n	Year	Month	HHV (MJ/m ³)
	2024	1	39.3
	2024	2	39.2
	2024	3	39
	2024	4	39
	2024	5	38.9
	2024	6	38.7
	2024	7	38.5
	2024	8	38.7
	2024	9	38.6
	2024	10	38.7
	2024	11	38.8
	2024	12	39.2
	-	Average	38.883

Quantification of GHG Emissions - Environment Canada and Ontario Ministry of the Environment Standard Quantification Methods Chapter 2 - Quantification Methods for Fuel Combustion and Flaring

Weber Manufacturing - NVD Facility			
Date Completed:	June 5, 2024	for calendar year	2024

Is reporting required?

Not Required

Calculations of CO₂e releases from fossil fuel combustion are based on the standard quantification methods listed in the Environment Canada document entitled "Greenhouse Gas Reporting Program -Canada's Greenhouse Gas Quantification Requirements Version 7.0 - December 2023", specifically Chapter 2 Quantification Methods for Fuel Combustion and Flaring. The following equations from the aforementioned section were used to calculate releases of greenhouse gases from the fuels used at the site.

Carbon dioxide emissions from fossil fuels (except natural gas):	Equation 2-2: Volume or Mass based Non-Variable Fuels Equation
Carbon dioxde emissions from natural gas:	Equation 2-9: Carbon Dioxide High Heat Value Method
	$\rm CO_{2NG}$ =Natural Gas Volume x (SLOPE x HHV - INTERCEPT) x 10 ⁻⁶
Methane and nitrous oxide emissions from natural gas:	Equation 2-12: CH_4 and N_2O High Heat Value Methods, in Energy Units
Methane and nitrous oxide emissions from fossil fuels:	Equation 2-13: CH₄ and N₂O High Heat Value Methods, in Physical Units

Other variables used in the determination of greenhouse gas emissions, including emission factors and high heating values, were also obtained from the above noted guidance document and are listed below. Note that the annual average high heat value for natural gas was obtained from Enbridge.

	E	mission Factor	5				Natural gas H	HV		
Fuel	CO2	CH₄	N ₂ O	Heating Value	Heating Values			Year	Month	HHV (MJ/m ³)
Natural Gas	1956.38 g/m³	0.98 g/GJ	0.87 g/GJ	<u>Fuel</u>	<u>HHV</u>	<u>Units</u>	ONTARIO	2024	1	39.3
Diesel (mobile)	2,681 g/L	0.073 g/L	0.02 g/L	Natural Gas	0.03888	GJ/m ³		2024	2	39.2
Propane (mobile)	1515 g/L	0.024 g/L	0.108 g/L	Propane	25.66	GJ/kL		2024	3	39
				Diesel	38.3	GJ/kL		2024	4	39
	Calcula	ted Releases (T	onnes)	Slope	66.2			2024	5	38.9
Fuel	CO2	CH₄	N ₂ O	Intercept	617.7			2024	6	38.7
Natural Gas	2002.809	0.039	0.035					2024	7	38.5
Diesel (mobile)	0.000	0.000	0.000	Natural gas burned	1,023,734 m°			2024	8	38.7
Propane	0.946	0.000	0.000	Diesel (mobile)	0 L			2024	9	38.6
Totals	2003.756	0.039	0.035	Propane burned	625 L			2024	10	38.7
Global Warming Potential	1	28	265					2024	11	38.8
CO ₂ e releases	2003.756	1.093	9.195					2024	12	39.2
Combustion Total			2,014.043						Average	38.883
				tonnes						
Total CO ₂ e Releases	2,014.043	tonnes								
Reporting Threshold	10,000	tonnes								
Does site exceed threshold?	No									

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

Financial Instruments Branch

financiers

40 St. Clair Ave. West 8th Floor Toronto ON M4V 1M2 40, av. St. Clair Ouest 8^e étage Toronto ON M4V 1M2

Direction des instruments

February 20, 2025

MEMORANDUM

- To: Peter Mussio Enbridge Gas Inc.
- From: Eric Loi Senior Engineer, Industrial Specialist
- RE: 2024 Natural Gas Composition and Higher Heating Value Data

Thank you for your letter (enclosed) dated February 6, 2025, on the 2024 gas composition and higher heating value (HHV) data.

Ontario Regulation 390/18 (Greenhouse Gas Emissions: Quantification, Reporting and Verification) and the *Guideline for Quantification, Reporting and Verification of Greenhouse Gas Emissions* (Guideline) allows for the use of carbon content and fuel higher heating values in the calculation of greenhouse gas emissions from fuel combustion and flaring.

The provisions in the Guideline include the use of fuel sampling or results received from the fuel supplier at the minimum frequency of monthly for natural gas. The gas composition and higher heating value data for Enbridge Gas Distribution Inc. that is contained in your February 6, 2025 letter meets the minimum frequency requirements for fuel sampling and subject to the facility meeting all the other applicable requirements in the Guideline pertaining to the measurement of natural gas, the data can be used for the calculation of greenhouse gas emissions in applicable equations.

Thanks for your cooperation in providing this data for facilities to use in the calculation of 2024 greenhouse gas emissions.

Yours truly,

Eric Loi, P.Eng., M.Eng.

Cc. Davika Misir, Manager, Financial Instruments Branch, MECP Encl.

Enbridge Gas Inc. 500 Consumers Road North York, ON M2J 1P8

February 6, 2025

Eric Loi, P. Eng., M. Eng. Senior Engineer, Industrial Specialist Ministry of Environment, Conservation and Parks 40 St. Clair Ave W, Foster Building Toronto ON, M4V 1M2

Delivered by e-mail: eric.loi@ontario.ca

Dear Eric:

RE: 2024 Gas Composition and HHV Data

Enbridge Gas Inc is pleased to provide gas composition and higher heating value (HHV) information for the reporters who will be reporting in 2025 into the Ontario GHG reporting system. This is provided in the summary table below. We understand that this information will be made available to facilities by the Ministry for use in calculations under Regulation 390/18 and information purposes.

Sincerely,

Peter Mussio Manager, Carbon Strategy Enbridge Gas Inc Peter.Mussio@enbridge.com

nbridge Gas Inc 2024 Gas Composition and High Heating Value Data													
		24-Jan	24-Feb	24-Mar	24-Apr	24-May	24-Jun	24-Jul	24-Aug	24-Sep	24-Oct	24-Nov	24-Dec
Ontario: Typical	intario: Typical Gas HHV												
Natural gas HHV	(GJ/standard* m3)	0.0393	0.0392	0.0390	0.0390	0.0389	0.0387	0.0385	0.0387	0.0386	0.0387	0.0388	0.0392
Ontario: Typical	Gas Composition												
methane	mole %	93.50	93.56	94.63	94.67	94.36	95.19	96.25	95.27	95.66	95.44	95.29	93.73
ethane	mole %	5.47	5.35	4.48	4.47	4.61	3.84	3.07	3.86	3.50	3.75	4.00	5.29
propane	mole %	0.24	0.24	0.19	0.19	0.12	0.12	0.09	0.10	0.10	0.14	0.15	0.22
butanes	mole %	0.05	0.05	0.03	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.04
pentanes	mole %	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
hexanes+	mole %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nitrogen	mole %	0.43	0.52	0.42	0.40	0.38	0.38	0.32	0.38	0.36	0.34	0.32	0.42
carbon dioxide	mole %	0.29	0.26	0.24	0.21	0.51	0.45	0.26	0.38	0.36	0.31	0.20	0.29
oxygen	mole %	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
hydrogen	mole %	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	mole %	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
*Standard condi	tions: 15° Celsius, 10	1.325 kPa	22		22	97. 	22	22	92 2		92		2 2

The gas analyses used to determine the typical HHV and gas composition follow the Measurement Canada requirements for Electricity and Gas and use the following analytical method references: GPA standards 2261 and 2286 for fuel carbon content and GPA standards 2145 and 2172 for fuel heat content.

While every effort has been made to ensure the accuracy of this information, Enbridge Gas does not warrant accuracy of the information for any purpose. Enbridge Gas provides no guarantee regarding gas composition or high heating value (HHV) for any specific delivery point. It is the responsibility of the information user to ensure that the data meets the applicable regulatory requirements.